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Abstract. The Poisson structure and exact solvability of several nonlinear dimers is
demonstrated and used to investigate self-trapping and blow-up effects. A large class of nonlinear
dimers is shown to be solvable in terms of Jacobi elliptic functions using-thatrix method.

1. Introduction

In this paper we investigate two nonlinear effects—self-trapping and blow-up—in several
modified self-trapping dimers. For these discrete integrable systems we obtain the Poisson
structure and demonstrate the exact solvability in four cases with compact and non-compact
algebraic structures.

Self-trapping is the phenomenon where the system is confined to only a part of phase
space. The simplest example is that of the motion in a double well. Blow-up describes
the situation where the solution ceases to exist after a finite time. In physical systems the
blow-up will at some stage be countered by dissipative effects.

The discrete self-trapping (DST) system is a set of coupled nonlinear (complex)
oscillators, which was introduced by Eilbeekal [1] as a model to describe the nonlinear
dynamics of small polyatomic chains such as water, ammonia, methane, acetylene, and
benzene, as well as of larger molecules, such as acetanilide. The DST system arises in
other fields too, e.g. quasiparticle motion on a dimer [2], stabilization of high-frequency
vibrations in the field of acoustic phonons in the Davydov model [3], and in nonlinear optics
to describe arrays of coupled nonlinear waveguides [4, 5].

First we discuss a generalization of the DST dimer with two different algebraic
structures: compact and non-compact. The terms compact and non-compact refer to the
topology of the phase space, i.e. whether the phase space is bounded or not. For compact
algebras the motion is always bounded, thus excluding the possibility of blow-up. Non-
compact algebras, on the other hand, may exhibit blow-up depending upon the nature of the
system. The existence of blow-up is therefore closely related to the underlying algebraic
structure. In the compact case we explicitly show the transition from free to self-trapped
motion, whereas in the non-compact case we investigate the presence of blow-up.

Then we use the-matrix method [6] to obtain a generic class of integrable dimers.
This method has proven to be applicable to a large number of discrete systems including
the Heisenberg spin chain [6], and in this paper we present yet another application. The
generic class of dimers thus obtained includes, as special cases, the generalized DST dimer
examined above and the near-Toda dimer [7], the latter being a generalization of the Toda
lattice that also exhibits blow-up.

1 Permanent address: Institute of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby,
Denmark.
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2. The compact case

We first consider the Hamiltonian [8—10]
y y * * *
H= 51|A1|4 + EZ |A2l* + | A12| A2l + 1] A1]? + walAol? + AL Az + €¥A145  (2.1)

where the complex site amplitudels and A, satisfy the Poisson structufe;, A7} = —i,
while y1, y2, @, w1, andw; are real parameters ardis complex. w3 andw, are onsite
eigenfrequenciesy; and y, are onsite nonlinearitiess is a linear coupling parameter,
whereasx determines the nonlinear coupling.

The symmetric resonant case with linear couplipg= y,, w1 = wy, anda = 0, is
solved in [1] and exhibits a phase transition from ‘free’ to ‘self-trapped’ behaviour depending
on whether the ratidd /(||N) is less than or greater than unity, respectively. HErés
the equivalent Hamiltonian given by (2.4) amd is the ‘number’ given by (28. The
guantum-mechanical aspects of the non-resonant easg,w,, were considered in [11].

Below we shall examine the general case and present a precise definition of self-trapping.
In terms of the Feynman variables

N =|A1* + |A,)? (2.28)
ri = A1A% 4+ ATAz (2.20)
ra = i(A1A5 — AjA7) (2.20)
rs = |A1f* — |Ag)? (2.d)
which satisfy the compact su(2) algebra
{ri,r2} = 2r3 (2.39)
{ra, rs} = 2r, (2.309)
{ra,r1} =2r; (2.%)
{N,rj}=0 j=123 (2.3)
N2=r12+r22+r§ (2.3)

the Hamiltonian may be written as
A= %(rg +5)2 + Reer — Imery (2.4)

wherey = ()1 +y2 —2w) /2,8 = [N(y1 — v2) + 2(w1 — w2)]/(y1 + y2 — 2a), and constant
terms involvingN and N2 have been omitted. The ‘numbe¥ is a Casimir element of the
su(2) algebra (28-¢) and is therefore a second conserved quantity, rendering the system
completely integrable. )
The equations of motion are obtained in the usual fashiorF\vda {F, H}, which after

the canonical transformation

71 = r1 €080 — rpSing

7o = r1SiNO + rp COSH
with € = |¢|€? become

Fi=—y(rs+8)iz

r2 =y (r3+8)r1— 2le|rs

f3 = 2|€|72.
71 and7; may also be expressed in termsrgfand the conjugate momentupa (in contrast
to the conjecture in [12]).



Integrable dimers 971

We may get a single first-order ODE fef by the following calculation
(F3)? = 4eP(N? = 7 — r3)
2

— 4e2(N? — r2) — 4(15{ . %(}’3 4 5)2) (2.5)

The right-hand side is a fourth-degree polynomialinand hences(r) may be expressed
in terms of Jacobi elliptic functions [13]. Sine€ < N2 it follows thatrs(z) is bounded at
all times, and hence there can be no blow-up in this systems Eof, equation (2.5) can
be reduced to a pendulum equation for the variabldefined byt = r3 [14].

In the following we shall investigate the phenomenon of self-trapping for the ODE (2.5).
In normalized variables = r3/N, § = §/N, K1 = H/(l|N), and K, = yN/(4l¢|) we
obtain

. 2
(X) 12— (K — Ka(x + 5?2 (2.6)
2|

We define self-trapping as the presence of a gap in the positive support of the right-hand side
of (2.6). For§ = 0 we thus recover the conditioki? > 1 for the existence of self-trapping.

To analyse the general case it is necessary to investigate the location of the zeros of the
right-hand side of (2.6). We first note that we may chodse0 as well ask, > 0 without
loss of generality by changing the signsxofind K, respectively.

The transition from free to self-trapped behaviour is characterized by a double root in
the right-hand side of (2.6). UsingaTHEMATICA [15] this amounts to the condition

C4Kf+C3Kf+czK12+clK1+co=0 (2.7)
with

co=1+ (8+205% — 5% K2 + 16(1 — 633K,

c1=2(—4+ 8% Ko+ 8(—1+ 8% (4+55%)K3

c2 = —1+8(1—458%)K? — 16(—1+ §2)%K?

c3 = 8K, + 32(1+ %) K3

c4 = —16[(22
which is a fourth-degree polynomial givinki; as function ofK, ands.

When K, < % there are only two real roots to this equation. For the dése= 0.2
they are shown in figure af as a function ofs. The two roots separate the free region
from the void region, the latter corresponding to invalid initial conditions Wit} < 0.

Whenk; > % andd < 5 there are four roots separating the free and void regions from
a region containing self-trapping. Whesy, > % and$ > 5% there are again only two real
roots and all the valid initial conditions lead to free behaviour. This is shown in figle 1(
for the caseK, = 2.

For fixed value ofK, > J, equation (2.7) thus determines a windd#y (§) < Ky <
K (8) as function ofs where the system exhibits self-trapping. Whemcreases beyond
5% this window disappears.

The critical value® is determined by requiring (2.7) to have a double root as function
of K1. Thus we are led to the following equation

0= (1—4K3)%+ 125°K2(1+ 28K3 + 16K3) + 485*K5(1 — 4K3) + 643°K 3
which has the solution
8 = (1 — (2Kp)V3)%2, (2.8)
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Figure 1. Compact case, phase diagram 165 = (a) 0.2, ©) 2.

This critical value tends to the limit 1 a&, goes to infinity, and from the definition &f
we may conclude that for all non-zero values of the parametes and |¢| there exist
initial conditions leading to self-trapping. Fdf, < % there is no critical value, and all
such initial conditions lead to free behaviour.

3. The non-compact case

We now consider the same Hamiltonian (2.1) where the variables this time satisfy the
alternate Poisson bracketd, A3} = {Az, A} = —i. The Feynman variables (&2d)
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now satisfy the non-compact @ 1) algebra

{ra,ra} = =2N (3.13)
{}’3, N} = 2}’2 (3:|b)
{N,rp} =2r3 (3.1¢)
{r1, N} = {r1,r2} = {r1,r3} = 0. (3.1d)

The Casimir element; satisfiesr? = N2 — r2 — r2 and is a second conserved quantity,
rendering the system completely integrable. The Hamiltonian may be written as

- 2a - -
H=r223/1+)/2+ 2V1+J/2+Nr3)/1 V2+Nw1+w2+r3w12

8 Ty 7 5 2 _rdme

(3.2)

omitting constant terms involving; andr?. Because the algebra is non-compact it raises
the possibility of blow-up. As shown in [8] this indeed happens for certain parameter values,
in particular whenyy, = y» =y, w1 = wp =€ =0, witha > —y > 0.

In the following we shall investigate the symmetric cage= y» = y andwi = w; = w,
with the corresponding Hamiltonian

H :},2271/ Za +r§g + Now —ralme. (3.3)
This system may be reduced to a generalized pendulum equation as shown below.

We introduce the time variable via t = r3. The equations of motion become

dN 2lme
=(a—-y) (rz-i- )

dr a—y
drs < a))
dr y
which have the solution
QA
N=""singr-2 (3.49)
2y 14
2lm
rp = ACOSQT — @ (3.40)
a—Yy

whereQ?2 = 2y (« —y) andA2 = 4H /(a — y) plus constant terms. The equation of motion
for r3 then leads to the generalized pendulum equation

a+y oa—y 4AImey

T = A%Q 2 SN2t — wA cosQT — sinQr. (3.5)
Y

Like the pendulum equation, the solution to this equation may be expressed in terms of
Jacobi elliptic functions.
We now investigate the appearance of blow-up for the ODE (3.5). offgr < 1 we
find thatQ becomes imaginary. Insertin@ = io, o > 0, into (3.5) and keeping only the
first term on the right-hand side leads to

A? :

R (a + 1) sinht.
4 \y

Since from (3.4-b) it follows that A is real, we see that the system blows up when

a/y +1<0.

In the next section we will show how to integrate this system in terms of Jacobi elliptic
functions.
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4. A general integrable dimer

In the following we will derive a generic class of Hamiltonians solvable byrtmatrix
method. Then we will show that this class includes the previous dimers as special cases.
Define the 2x 2 transfer matrices [16]
bj(u +kpjq;) — a; Kpjpj ) .
Liwu=[" I / T =12 (41
100 ( qj dj(u — kp;q;) + ¢; g *1)

with pj = bjCj+ajdj—ijdjijIj, {qjv Pk} = (S]’k, andaj, bj, Cjs dj, andx arbitrary constants.
u is the spectral parameter. The transfer matricgs) satisfy the Poisson algebra [6]

{L@)® L)} =[ru—v), L(u) ® L()] (4.2)
where® denotes the usual tensor produet, [B] denotes the commutator of the matrices

and B, and{- ® -} is the tensor product with element multiplication replaced by the Poisson
bracket. The matrix(u) is given by

(4.3)

o O o

K
r(u) = "

0
0
1
0

[eoNeNol
oNel o)

It can been shown [6] that the
and that its trace

t(u) =tr(Ly(u) - L2(u))

is a generating function for integrals of motion in involution.
For the choice (4.1) we obtain

t(u) = (b1by + did)u? + Jiu + Ja (4.4)

where the commuting variableg, and 7, are functions ofp1, p2, q1, andg,. They may
conveniently be written in terms of Feynman variables now defined by

3

onodromy matkit:) = L1(u) - Lo(u) satisfies (4.2) too,

N = p1g2 — p2q1 (4.59)
r1= p1q1+ p2q2 (4.%0)
r2 = piq2 + p2qa (4.50)
r3s = pi91 — p2q92 (4.5d)

which satisfy the s(d, 1) algebra (3.2—) given in section 3. Thus the Casimir element
is a second conserved quantity. We then obtain

J1 = k(b1by — dido)r1 + c1d2 + cod1 — arbs — azby

Jo = kH + go+ gir1 + gor?
for some constantgg, g1, andg,. The HamiltonianH assumes the form

H = k1N + korp + karz + kaNr3 + ksrars + ker (4.6)
where

1 Kri
k1o = é(blcl F baco + ardy F axdp) — v (b1d1 F bad>)
ks = 3(aiby — aby + c1dp — c2dy)
K
kas = ~2 (b1dy % bodp)

K

ke = 4(b1b2 + didp).
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It follows from the above that any Hamiltonian of the form (4.6) is completely integrable.
We will now show how the--matrix method may be used to integrate the Hamiltonian (4.6)
in terms of Jacobi elliptic functions.

The powerful method of separation of variables has been shown to be applicable to
systems represented by a monodromy matrix satisfying (4.2) with-theatrix (4.3), see
for instance the recent review [17]. Lef be the roots of the lower left-hand element of
the monodromy matrixX (1). These variables then satisfy the so-called Dubrovin equations
(18]

1

U — Uy

i = /R[]

k#j

with R(u) = t(u)? — 4 detL(u), wherer (u) is given in (4.4). For the choice (4.1) we have
the single separation variablge given by

_ q2(kd1p1g1 — c1) — qi(kbap2qz — az)
diq> + boqy

ug
and it therefore satisfies

(i11)? = ((brbz + dado)u + Jauy + Jo)?
—4(byuy — ar)(diug + c1)(baus — az)(daus + c2). 4.7)

The right-hand side of (4.7) is of fourth degreesinand the solutiom;(+) may therefore be
expressed in terms of Jacobi elliptic functions. It can be shown that the shifted and scaled
variablei; = (u1 — as/by)/k may be expressed in terms of the parameters. ., ks and
the variablesv, r1, r,, andrs. We have thus given the solution for an arbitrary Hamiltonian
of the form (4.6).

We now show that the general system (4.6) reduces to the non-compact case for special
choices of the parameter values. Introducing the canonical transformation

Fo = rpCOSH — r3Sind
F3 = rp SiNO + rz3 cosH

and choosing the parametgrsuch that

coo ="

o

gives the equivalent Hamiltonian

- ay .o . a+y . Y. <
H = (y + E) 73+ —y(+y)rars—Ime Fo+Ime [—~F3+ wN
o o

which is of the form (4.6).

Another special case of the general Hamiltonian (4.6) is obtained by skttiagh, = 1,
c1=c=c dy =d, =0, ande = —1/m. Applying the canonical transformation
Q; =logg; and P; = p;q;, j =1, 2, then leads to the Hamiltonian

m Pl 2 m P2 2
H = > ( + a1> + = ( +a2> +c(Prexp(Q2 — Q1) + Poexp(Q1 — Q2))  (4.8)
m 2 \m

omitting constant terms. This is the near-Toda lattice specialized to two degrees of freedom.
It was first introduced in [7] as an integrable generalization of the Toda lattice [19].
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5. Conclusions

We have presented a detailed analysis of two dimers and demonstrated the presence of
self-trapping and blow-up. In particular we found for the Hamiltonian (2.4) the following
conditions for self-trapping:

() K2 > 3,

(i) & <8,

(iii) the left-hand side of (2.7) must be negative, and

(iv) the right-hand side of (2.6) must be positive.

For the Hamiltonian (3.3) we showed that blow-up is present proviged+ 1 < 0.

Finally we showed that the general Hamiltonian (4.6) may be integrated in terms of
Jacobi elliptic functions and that it contains two interesting special cases: the generalized
DST dimer (3.3) and the near-Toda dimer (4.8).
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