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Abstract. The Poisson structure and exact solvability of several nonlinear dimers is
demonstrated and used to investigate self-trapping and blow-up effects. A large class of nonlinear
dimers is shown to be solvable in terms of Jacobi elliptic functions using ther-matrix method.

1. Introduction

In this paper we investigate two nonlinear effects—self-trapping and blow-up—in several
modified self-trapping dimers. For these discrete integrable systems we obtain the Poisson
structure and demonstrate the exact solvability in four cases with compact and non-compact
algebraic structures.

Self-trapping is the phenomenon where the system is confined to only a part of phase
space. The simplest example is that of the motion in a double well. Blow-up describes
the situation where the solution ceases to exist after a finite time. In physical systems the
blow-up will at some stage be countered by dissipative effects.

The discrete self-trapping (DST) system is a set of coupled nonlinear (complex)
oscillators, which was introduced by Eilbecket al [1] as a model to describe the nonlinear
dynamics of small polyatomic chains such as water, ammonia, methane, acetylene, and
benzene, as well as of larger molecules, such as acetanilide. The DST system arises in
other fields too, e.g. quasiparticle motion on a dimer [2], stabilization of high-frequency
vibrations in the field of acoustic phonons in the Davydov model [3], and in nonlinear optics
to describe arrays of coupled nonlinear waveguides [4, 5].

First we discuss a generalization of the DST dimer with two different algebraic
structures: compact and non-compact. The terms compact and non-compact refer to the
topology of the phase space, i.e. whether the phase space is bounded or not. For compact
algebras the motion is always bounded, thus excluding the possibility of blow-up. Non-
compact algebras, on the other hand, may exhibit blow-up depending upon the nature of the
system. The existence of blow-up is therefore closely related to the underlying algebraic
structure. In the compact case we explicitly show the transition from free to self-trapped
motion, whereas in the non-compact case we investigate the presence of blow-up.

Then we use ther-matrix method [6] to obtain a generic class of integrable dimers.
This method has proven to be applicable to a large number of discrete systems including
the Heisenberg spin chain [6], and in this paper we present yet another application. The
generic class of dimers thus obtained includes, as special cases, the generalized DST dimer
examined above and the near-Toda dimer [7], the latter being a generalization of the Toda
lattice that also exhibits blow-up.

† Permanent address: Institute of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby,
Denmark.
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2. The compact case

We first consider the Hamiltonian [8–10]

H = γ1

2
|A1|4+ γ2

2
|A2|4+ α|A1|2|A2|2+ ω1|A1|2+ ω2|A2|2+ εA∗1A2+ ε∗A1A

∗
2 (2.1)

where the complex site amplitudesA1 andA2 satisfy the Poisson structure{Aj ,A∗j } = −i,
while γ1, γ2, α, ω1, andω2 are real parameters andε is complex. ω1 andω2 are onsite
eigenfrequencies,γ1 and γ2 are onsite nonlinearities,ε is a linear coupling parameter,
whereasα determines the nonlinear coupling.

The symmetric resonant case with linear coupling,γ1 = γ2, ω1 = ω2, andα = 0, is
solved in [1] and exhibits a phase transition from ‘free’ to ‘self-trapped’ behaviour depending
on whether the ratioH̃ /(|ε|N) is less than or greater than unity, respectively. HereH̃ is
the equivalent Hamiltonian given by (2.4) andN is the ‘number’ given by (2.2a). The
quantum-mechanical aspects of the non-resonant case,ω1 6= ω2, were considered in [11].

Below we shall examine the general case and present a precise definition of self-trapping.
In terms of the Feynman variables

N = |A1|2+ |A2|2 (2.2a)

r1 = A1A
∗
2 + A∗1A2 (2.2b)

r2 = i(A1A
∗
2 − A∗1A2) (2.2c)

r3 = |A1|2− |A2|2 (2.2d)

which satisfy the compact su(2) algebra

{r1, r2} = 2r3 (2.3a)

{r2, r3} = 2r1 (2.3b)

{r3, r1} = 2r2 (2.3c)

{N, rj } = 0 j = 1, 2, 3 (2.3d)

N2 = r2
1 + r2

2 + r2
3 (2.3e)

the Hamiltonian may be written as

H̃ = γ

4
(r3+ δ)2+ Reεr1− Im εr2 (2.4)

whereγ = (γ1+ γ2− 2α)/2, δ = [N(γ1− γ2)+ 2(ω1−ω2)]/(γ1+ γ2− 2α), and constant
terms involvingN andN2 have been omitted. The ‘number’N is a Casimir element of the
su(2) algebra (2.3a–e) and is therefore a second conserved quantity, rendering the system
completely integrable.

The equations of motion are obtained in the usual fashion viaḞ = {F,H }, which after
the canonical transformation

r̃1 = r1 cosθ − r2 sinθ

r̃2 = r1 sinθ + r2 cosθ

with ε = |ε|eiθ become

˙̃r1 = −γ (r3+ δ)r̃2
˙̃r2 = γ (r3+ δ)r̃1− 2|ε|r3
ṙ3 = 2|ε|r̃2.

r̃1 and r̃2 may also be expressed in terms ofr3 and the conjugate momentump3 (in contrast
to the conjecture in [12]).
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We may get a single first-order ODE forr3 by the following calculation

(ṙ3)
2 = 4|ε|2(N2− r̃2

1 − r2
3)

= 4|ε|2(N2− r2
3)− 4

(
H̃ − γ

4
(r3+ δ)2

)2
. (2.5)

The right-hand side is a fourth-degree polynomial inr3, and hencer3(t) may be expressed
in terms of Jacobi elliptic functions [13]. Sincer2

3 6 N2 it follows that r3(t) is bounded at
all times, and hence there can be no blow-up in this system. Forδ = 0, equation (2.5) can
be reduced to a pendulum equation for the variableτ , defined byτ̇ = r3 [14].

In the following we shall investigate the phenomenon of self-trapping for the ODE (2.5).
In normalized variablesx = r3/N , δ̃ = δ/N , K1 = H̃ /(|ε|N), andK2 = γN/(4|ε|) we
obtain (

ẋ

2|ε|
)2

= 1− x2− (K1−K2(x + δ̃)2)2. (2.6)

We define self-trapping as the presence of a gap in the positive support of the right-hand side
of (2.6). Forδ̃ = 0 we thus recover the conditionK2

1 > 1 for the existence of self-trapping.
To analyse the general case it is necessary to investigate the location of the zeros of the

right-hand side of (2.6). We first note that we may chooseδ̃ > 0 as well asK2 > 0 without
loss of generality by changing the signs ofx andK1, respectively.

The transition from free to self-trapped behaviour is characterized by a double root in
the right-hand side of (2.6). UsingMATHEMATICA [15] this amounts to the condition

c4K
4
1 + c3K

3
1 + c2K

2
1 + c1K1+ c0 = 0 (2.7)

with

c0 = 1+ (8+ 20δ̃2− δ̃4)K2
2 + 16(1− δ̃2)3K4

2

c1 = 2(−4+ δ̃2)K2+ 8(−1+ δ̃2)(4+ 5δ̃2)K3
2

c2 = −1+ 8(1− 4δ̃2)K2
2 − 16(−1+ δ̃2)2K4

2

c3 = 8K2+ 32(1+ δ̃2)K3
2

c4 = −16K2
2

which is a fourth-degree polynomial givingK1 as function ofK2 and δ̃.
WhenK2 <

1
2 there are only two real roots to this equation. For the caseK2 = 0.2

they are shown in figure 1(a) as a function ofδ̃. The two roots separate the free region
from the void region, the latter corresponding to invalid initial conditions with(ẋ)2 < 0.

WhenK2 >
1
2 andδ̃ < δ̃cr there are four roots separating the free and void regions from

a region containing self-trapping. WhenK2 >
1
2 and δ̃ > δ̃cr there are again only two real

roots and all the valid initial conditions lead to free behaviour. This is shown in figure 1(b)
for the caseK2 = 2.

For fixed value ofK2 >
1
2, equation (2.7) thus determines a windowK−1 (δ̃) < K1 <

K+1 (δ̃) as function ofδ̃ where the system exhibits self-trapping. Whenδ̃ increases beyond
δ̃cr this window disappears.

The critical valueδ̃cr is determined by requiring (2.7) to have a double root as function
of K1. Thus we are led to the following equation

0= (1− 4K2
2)

3+ 12δ̃2K2
2(1+ 28K2

2 + 16K4
2)+ 48δ̃4K4

2(1− 4K2
2)+ 64δ̃6K6

2

which has the solution

δ̃cr = (1− (2K2)
−1/3)3/2. (2.8)
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Figure 1. Compact case, phase diagram forK2 = (a) 0.2, (b) 2.

This critical value tends to the limit 1 asK2 goes to infinity, and from the definition of̃δ
we may conclude that for all non-zero values of the parametersγ , δ, and |ε| there exist
initial conditions leading to self-trapping. ForK2 <

1
2 there is no critical value, and all

such initial conditions lead to free behaviour.

3. The non-compact case

We now consider the same Hamiltonian (2.1) where the variables this time satisfy the
alternate Poisson brackets{A1, A

∗
2} = {A2, A

∗
1} = −i. The Feynman variables (2.2a–d)
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now satisfy the non-compact su(1, 1) algebra

{r2, r3} = −2N (3.1a)

{r3, N} = 2r2 (3.1b)

{N, r2} = 2r3 (3.1c)

{r1, N} = {r1, r2} = {r1, r3} = 0. (3.1d)

The Casimir elementr1 satisfiesr2
1 = N2 − r2

2 − r2
3 and is a second conserved quantity,

rendering the system completely integrable. The Hamiltonian may be written as

H̃ = r2
2
γ1+ γ2+ 2α

8
+ r2

3
γ1+ γ2

4
+Nr3γ1− γ2

4
+N ω1+ ω2

2
+ r3ω1− ω2

2
− r2Im ε

(3.2)

omitting constant terms involvingr1 and r2
1. Because the algebra is non-compact it raises

the possibility of blow-up. As shown in [8] this indeed happens for certain parameter values,
in particular whenγ1 = γ2 ≡ γ , ω1 = ω2 = ε = 0, with α > −γ > 0.

In the following we shall investigate the symmetric caseγ1 = γ2 ≡ γ andω1 = ω2 ≡ ω,
with the corresponding Hamiltonian

H̃ = r2
2
γ + α

4
+ r2

3
γ

2
+Nω − r2Im ε. (3.3)

This system may be reduced to a generalized pendulum equation as shown below.
We introduce the time variableτ via τ̇ = r3. The equations of motion become

dN

dτ
= (α − γ )

(
r2+ 2Imε

α − γ
)

dr2
dτ
= −2γ

(
N + ω

γ

)
which have the solution

N = �A

2γ
sin�τ − ω

γ
(3.4a)

r2 = A cos�τ − 2Imω

α − γ (3.4b)

where�2 = 2γ (α−γ ) andA2 = 4H̃ /(α−γ ) plus constant terms. The equation of motion
for r3 then leads to the generalized pendulum equation

τ̈ = A2�
α + γ

4γ
sin 2�τ − ωAα − γ

γ
cos�τ − 4AIm εγ

�
sin�τ. (3.5)

Like the pendulum equation, the solution to this equation may be expressed in terms of
Jacobi elliptic functions.

We now investigate the appearance of blow-up for the ODE (3.5). Forα/γ < 1 we
find that� becomes imaginary. Inserting� = iσ , σ > 0, into (3.5) and keeping only the
first term on the right-hand side leads to

τ̈ ≈ −A
2σ

4

(
α

γ
+ 1

)
sinh 2στ.

Since from (3.4a–b) it follows that A is real, we see that the system blows up when
α/γ + 1< 0.

In the next section we will show how to integrate this system in terms of Jacobi elliptic
functions.
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4. A general integrable dimer

In the following we will derive a generic class of Hamiltonians solvable by ther-matrix
method. Then we will show that this class includes the previous dimers as special cases.

Define the 2× 2 transfer matrices [16]

Lj(u) =
(
bj (u+ κpjqj )− aj κρjpj

qj dj (u− κpjqj )+ cj
)

j = 1, 2 (4.1)

with ρj = bj cj+ajdj−κbjdjpjqj , {qj , pk} = δjk, andaj , bj , cj , dj , andκ arbitrary constants.
u is the spectral parameter. The transfer matricesLj(u) satisfy the Poisson algebra [6]

{L(u) ⊗, L(v)} = [r(u− v), L(u)⊗ L(v)] (4.2)

where⊗ denotes the usual tensor product, [A,B] denotes the commutator of the matricesA
andB, and{· ⊗, ·} is the tensor product with element multiplication replaced by the Poisson
bracket. The matrixr(u) is given by

r(u) = κ

u


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (4.3)

It can been shown [6] that the monodromy matrixL(u) = L1(u) ·L2(u) satisfies (4.2) too,
and that its trace

t (u) ≡ tr(L1(u) · L2(u))

is a generating function for integrals of motion in involution.
For the choice (4.1) we obtain

t (u) = (b1b2+ d1d2)u
2+ J1u+ J2 (4.4)

where the commuting variablesJ1 andJ2 are functions ofp1, p2, q1, andq2. They may
conveniently be written in terms of Feynman variables now defined by

N = p1q2− p2q1 (4.5a)

r1 = p1q1+ p2q2 (4.5b)

r2 = p1q2+ p2q1 (4.5c)

r3 = p1q1− p2q2 (4.5d)

which satisfy the su(1, 1) algebra (3.1a–d) given in section 3. Thus the Casimir elementr1
is a second conserved quantity. We then obtain

J1 = κ(b1b2− d1d2)r1+ c1d2+ c2d1− a1b2− a2b1

J2 = κH + g0+ g1r1+ g2r
2
1

for some constantsg0, g1, andg2. The HamiltonianH assumes the form

H = k1N + k2r2+ k3r3+ k4Nr3+ k5r2r3+ k6r
2
3 (4.6)

where

k1,2 = 1

2
(b1c1∓ b2c2+ a1d1∓ a2d2)− κr1

4
(b1d1∓ b2d2)

k3 = 1
2(a1b2− a2b1+ c1d2− c2d1)

k4,5 = −κ
4
(b1d1± b2d2)

k6 = −κ
4
(b1b2+ d1d2).
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It follows from the above that any Hamiltonian of the form (4.6) is completely integrable.
We will now show how ther-matrix method may be used to integrate the Hamiltonian (4.6)
in terms of Jacobi elliptic functions.

The powerful method of separation of variables has been shown to be applicable to
systems represented by a monodromy matrix satisfying (4.2) with ther-matrix (4.3), see
for instance the recent review [17]. Letuj be the roots of the lower left-hand element of
the monodromy matrixL(u). These variables then satisfy the so-called Dubrovin equations
[18]

u̇j =
√
R(uj )

∏
k 6=j

1

uj − uk

with R(u) = t (u)2− 4 detL(u), wheret (u) is given in (4.4). For the choice (4.1) we have
the single separation variableu1 given by

u1 = q2(κd1p1q1− c1)− q1(κb2p2q2− a2)

d1q2+ b2q1

and it therefore satisfies

(u̇1)
2 = ((b1b2+ d1d2)u

2
1+ J1u1+ J2)

2

−4(b1u1− a1)(d1u1+ c1)(b2u1− a2)(d2u1+ c2). (4.7)

The right-hand side of (4.7) is of fourth degree inu1 and the solutionu1(t) may therefore be
expressed in terms of Jacobi elliptic functions. It can be shown that the shifted and scaled
variableũ1 = (u1 − a2/b2)/κ may be expressed in terms of the parametersk1, . . . , k6 and
the variablesN , r1, r2, andr3. We have thus given the solution for an arbitrary Hamiltonian
of the form (4.6).

We now show that the general system (4.6) reduces to the non-compact case for special
choices of the parameter values. Introducing the canonical transformation

r̃2 = r2 cosθ − r3 sinθ

r̃3 = r2 sinθ + r3 cosθ

and choosing the parameterθ such that

cos2 θ = −γ
α

gives the equivalent Hamiltonian

H̄ =
(
γ + α

2

)
r̃2

3 +
√
−γ (α + γ )r̃2r̃3− Im ε

√
α + γ
α

r̃2+ Im ε

√
−γ
α
r̃3+ ωÑ

which is of the form (4.6).
Another special case of the general Hamiltonian (4.6) is obtained by settingb1 = b2 = 1,

c1 = c2 = c, d1 = d2 = 0, and κ = −1/m. Applying the canonical transformation
Qj = logqj andPj = pjqj , j = 1, 2, then leads to the Hamiltonian

H = m

2

(
P1

m
+ a1

)2

+ m
2

(
P2

m
+ a2

)2

+ c(P1 exp(Q2−Q1)+ P2 exp(Q1−Q2)) (4.8)

omitting constant terms. This is the near-Toda lattice specialized to two degrees of freedom.
It was first introduced in [7] as an integrable generalization of the Toda lattice [19].
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5. Conclusions

We have presented a detailed analysis of two dimers and demonstrated the presence of
self-trapping and blow-up. In particular we found for the Hamiltonian (2.4) the following
conditions for self-trapping:

(i) K2 >
1
2,

(ii) δ̃ < δ̃cr,
(iii) the left-hand side of (2.7) must be negative, and
(iv) the right-hand side of (2.6) must be positive.
For the Hamiltonian (3.3) we showed that blow-up is present providedα/γ + 1< 0.
Finally we showed that the general Hamiltonian (4.6) may be integrated in terms of

Jacobi elliptic functions and that it contains two interesting special cases: the generalized
DST dimer (3.3) and the near-Toda dimer (4.8).
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